Author Archives: Greening Me

Characterising the loads

The loads that I already control via the HEMS (that is loads which can be interrupted like battery charging, car charging and water heating) are essentially constant, that is that they draw the same power regardless of progress. The battery charging does start to tail off at particularly high states of charge, but that effect is neglected here. However the non-interruptible loads like the dishwasher and washing machine are expected to have very variable loads as the cycle continues – largely because periods of water heating demand much more power than spraying water around, spinning the drum, or pumping water out.

I thus decided that I would measure the pattern of these variable loads and use that information as part of the decision when to run the load for lowest cost. Rather than tabulate the half-hourly energy price as I do for interruptible loads, I would instead estimate the energy price to complete a load for each half hour in which I might start the cycle. This process of measuring the load pattern during a cycle I have referred to as characterisation.

I characterised the loads using a plug-in energy meter reporting kWh which I read manually every half hour during a typical wash cycle to determine the blue lines above. I then calculated the energy usage in each half hour period as per the orange line. I did all of this half-hourly as that’s the interval after which the energy price changes and correspondingly the interval at which the HEMS updates its output controls.

The measured loads confirmed my suspicions regarding variation with heat inputs providing the largest loads – twice for the dishwasher as it both heats the water at the start and heats to dry the dishes at the end, while the washing machine also heats the water at the start but spins to dry the clothes at the end (which is more energy efficient). The effect of this is that the washing machine would generally be expected to start in the cheapest half hour as that’s when it uses most energy, while the optimum time for the dishwasher is more complex to determine.

Of course the actual loads for the wash cycle will vary from the prediction for various reasons including not only the ability to select different wash cycles and options but also the smartness of the device in assessing how full it is or how dirty the utensils are.

I also decided that I would not explicitly turn these loads off from the HEMS – only turn them on. Not turning the loads off allows for some uncertainty as to the length of a cycle depending on the actual cycle selected, options selected, loading of machine etc. Not turning the outlet off also provides for the user being able to do additional loads under manual control if at home later in the day.

Internally my HEMS creates a schedule of 48 half-hourly actions each day for each load. Typically each action is either ‘on’ or ‘off’ (the fixed battery is more complex). The actions for these devices will follow a similar pattern of 48 half-hourly actions, but typically only one of those is ‘on’ and the 47 actions that would normally be ‘off’ do nothing. There existence is largely for equivalence and re-use of code, but they also ensure that the previous day’s ‘on’ command is over-written as required if the start time for the new day is different to that for the prior day.

Choosing the smart plug

One of the enhancements to my HEMS that I’ve had in mind for some time is to control wet goods – that is dishwasher and washing machine. I had previously thought that this might have to wait until I replaced my current machines with smart equivalents, but recently discovered that both existing machines recover after a power outage and continue their cycles. This creates the opportunity to put the machines on smart plugs, to manually start washing cycles, but then immediately turn the smart plugs off, and then use the smart plug to resume the cycle at the optimum time as instructed by the HEMS.

I already have two Eve Energy smart plugs as part of my smart heating system using Apple HomeKit, but these aren’t ideal for this application as I really need an exposed API to allow the HEMS to have control. However I then came across WIFIPLUG which, not only has an exposed API, but also Apple HomeKit compatibility (and indeed compatibility with other smart home ecosystems).

The WIFIPLUG (unlike the Eve Energy) also features an integrated on/off button allowing the washing cycle to be paused using this button, or via the HomeKit app, before later resuming under HEMS control when the energy cost is lowest.

The WIFIPLUG also has its own app which allows timers to be set and energy consumption viewed (although not in great detail) giving the ability to control via Apple’s own Home app or via the WIFIPLUG app. The one thing that I hadn’t spotted first time around is that it’s preferred to add the unit to the WIFIPLUG app (which then automatically adds to Home) whereas if you add to Home directly then you lose the ability to connect to the WIFIPLUG app later.

I was sufficiently impressed to buy a second unit even before I’d integrated the first, and indeed I now have another two on order.

Better than free electricity

A couple of times last week our dynamic electricity price excelled itself by going negative so we were actually being paid to use electricity. This situation typically arises when the weather is unusually windy causing a surplus of renewable power. Then, rather than the wind turbines being turned off to eliminate excess generation, the market price drops to encourage more consumption. Such additional consumption at the cheapest times will be a combination of genuinely increased consumption (such as my own shift from gas water heating to electric) and shifting electricity consumption from more expensive times to cheaper times (such as my own electric car charging and static battery charging).

Electricity price and consumption for Monday 9th December

The electricity price dropped as low as -4.85 p/kWh between 3:30 and 4:00 AM, with an average consumption-weighted unit price of 0.62 p/kWh. The red line shows the electricity price in p/kWh on the left-hand scale, the blue shows the average consumption in this billing month, and the bars show today’s consumption driven by today’s prices. (The right hand cost column is missing the leading ‘-‘ symbol where appropriate.)

The increasing electricity consumption as the price falls is driven by automated control of loads driven by my HEMS. The HEMS controls fixed battery charging (and discharging), electric car charging, and water heating in response to electricity price.

Report on Agile Octopus last weekend from The Guardian.

You can learn more about Octopus Agile here and save yourself an extra £50 if you decide to switch.

Stepping up

One of the features of the way my HEMS works is the inverse relationship between electricity demand and electricity price – electricity demand increases as the price falls and falls as the price rises. This effect helps to contribute to my low average cost for electricity – 5.63 p/kWh ex-VAT most recently (Sep/Oct 2019). The effect exists because my different controlled loads (battery, car and water heating) each need different times to achieve full (approximately 8, 5 and 2 hours respectively).

Relationship between HEMS-controlled loads and electricity price.

This chart is illustrative only because day-to-day needs for the different loads may change, and also the electricity price varies half-hour-by-half-hour and day-by-day but typical recent behaviour is shown. The actual rules for each device may be summarised as follows:

  1. House baseload – support house from battery when cost greater than 10 p/kWh (limit adjusts automatically to reflect pricing on the day), otherwise take baseload from grid.
  2. Storage battery charging – charge from the grid in cheapest 5 hours over entire 24-hour period.
  3. Car charging – charge for a total period of so many hours within a window between arrival time at home and departure time the next day, and also any hours during day at equivalent price or lower.
  4. Water heating – charge for the cheapest 2 hours when electricity price falls below gas price (did not occur on day illustrated below).
Electricity consumption in kW versus time overnight.

These same loads may also be enabled in priority order when the solar panels are in surplus. Priority is:

  1. Baseload
  2. Storage battery charging
  3. Car charging
  4. Water heating.

How green was my xxxxxx solar?

One question that gets asked periodically is how green are technologies like solar panels given that there much be some emissions created in their manufacture and ultimate disposal.

Lifetime gCO2/ kWh for various generation sources

It’s probably no surprise that the rooftop solar PV is considerably less carbon-intensive than any fossil fuel (1/20th of coal for example) but that it beats biomass or even utility scale solar (I.e. solar farms) may be a surprise. My understanding is that the recent switch of emphasis in the UK from rooftop solar (with elimination of FiTs) to solar farms is driven more by investment costs than ultimate carbon-intensity.

Source: Intergovernmental Panel on Climate Change (IPCC) as quoted by Spirit Energy

And when the batteries go flat? (The previously unanswered question)

The height of summer is perhaps an odd choice of time for a post about heating, however we’ll get to that. Regular readers may recall that our smart heating controls enable the boiler when any radiator demands heat via its smart valve (eTRV) and disables the boiler when the last room is up to temperature. That rather begs the question what happens to the control logic when the batteries go flat. The HomekIt rules are not sufficiently sophisticated for the author to set that behaviour via the program, and I’ve seen no default behaviour described on-line.

Today the inevitable happened and a battery did go so low as to stop operation. The behaviour of the heating was to force the boiler on. Most rooms did not heat up as their own eTRVs recorded them already being sufficiently hot, although the bathrooms and cloakrooms did heat up (they generally lack eTRVs) as indeed did the room with the flat battery (my daughter’s playroom). Other symptoms included an icon in the Home app that would not grey out when disabled like other room eTRVs and the the boiler repeatedly being re-enabled even after manually disabled through the app.

Replacement with fresh batteries immediately restored normal operation.

Although any more heat input is unwelcome on a day as hot as today, we have at least demonstrated that the system is failsafe in a flat battery condition – I’d rather that the system heated up with a flat battery to prevent freezing damage in winter at the cost of some discomfort in summer due to excess heat.

It’s 265 days since my records indicate an earlier battery change, albeit for most of that time the heating hasn’t been on (so no power needed for valve movements). It’s over a year now that I’ve been using Ni-MH cells in these valves. The cells are slightly lower voltage than the recommended cells (1.2 versus 1.5 Volts) so do create spurious low battery warnings, but apart from that they seem to work well with adequate life before recharging. I thus anticipate continuing with their use of a means of reducing battery waste. I’ve had no cell failures to date.

HEMS in action

Yesterday provided a good example of my HEMS in action as the electricity price dropped quite low due to stormy weather conditions. Normally at this time of year the HEMS isn’t doing much with the storage battery as daytime solar output is enough to fully charge the battery, but yesterday low pricing was enough to automatically enable both battery charging and water heating overnight. Car charging was due to run anyway driven by the demand for an hour of charging, but battery charging and water heating was triggered by the low price rather than a needed to take power for a pre-defined period of time.

HEMS schedule 9th August

The screenshot above from my phone shows the HEMS’ plan for the the early hours of the 9th. The first price column shows one hour of car charging at the cheapest price. The second column shows half an hour of water heating as the electricity price has fallen below 3.5 p/kWh when it is assumed to be cheaper than gas. The third column shows four hours of battery charging when the electricity price is below 5 p/kWh.

Metered electricity consumption (HAN side) 9th August

The above image from the HAN side of my smart meter shows the energy consumption of the house varying through the night in response to these requests from the HEMS – battery charging at the widest point, car charging above that for an hour, and water heating above that for 30 minutes.

Half-hourly metered consumption (WAN side) and electricity price for 9th August

Finally this image shows the energy consumption versus price data for the same period shows how the action of the HEMS increases electricity demand as the price drops. Indeed on this day there was virtually no consumption at any other time.

For August 9th as a whole I paid 52 pence for 7.547 kWh of electricity. Taking off the 21 pence for the standing charge leaves 31 pence for the electricity kWhs alone, an average of 4.11 p/kWh.

Why I didn’t buy .. spray foam insulation.

I recently signed up for a free home energy survey. After various questions about my home – so not much of a survey – my visitor alighted on spray foam insulation in the loft as a technology that should be of interest to me. Claims included:

  • Spray foam insulation would dramatically reduce my heating bills (“save upto 50% on future fuel prices”) – a sum amounting to hundreds of pounds of savings annually.
  • Spray foam insulation would result in a better EPC rating and thus increase the resale value of my home ( “.. Eco measures are adding up to 14% on property values.. “).
Spray foam loft insulation

Given that the salesman attached some credibility to the UK’s national EPC scheme which requires an assessment of each home before sale as evidence for the buyer, then a good start point would be to see what the EPC said about my loft insulation. According to my most recent survey from September 2015 (so almost 4 years old) my home, at that time, had 100 mm of loft insulation between the floor joists with a recommendation to increase to 270 mm thickness by placing another layer of insulation across the top of the floor joists which would reduce my energy consumption by £219 over 3 years. £219 over 3 years amounts to £73 annually. In fact, since the survey was completed, I added the additional insulation recommended in October 2016 so that saving has been made and 1 point improvement on the EPC scale obtained. According to Which? magazine quoting the National Insulation Association “100mm of spray foam insulation is equivalent to around 170mm of loft insulation” so my 270 mm of conventional insulation may provide more insulation than the proposed spray foam insulation. My £73 annual saving from the EPC is far from the hundreds of pounds annually being claimed by my guest. Thus I don’t think the claimed savings are justified.

Floor level loft insulation

Then there’s the question about what the impact on my EPC rating would be. The extra 170 mm added post-2015 survey added 1 EPC point to my house rating. That’s not a big increase.

Then there’s the question about what the value of that 1 point on the EPC rating would be. According to the EPC certificate itself the indicative cost of adding 170 mm of insulation is £100 to £350 pounds. I actually paid £300. It’s not reasonable to believe that any additional value added to the home exceeds the cost of doing the work for such a small scale job. The salesman actually left a written claim that “Reports now showing that Eco measures are adding up to 14% to property prices” – I suspect that you’d need a lot of Eco measures (well beyond loft insulation) to add 14% to property prices which would be around £70,000 for my home!

Then there’s the overall question of the cost. Bearing in mind that my current insulation cost £300 and may be equally if not more effective than the spray foam then what was the spray foam quotation for? Discounted to £7,658 with marketing testimonials after the usual call to his boss to get “approval”. Which? reckons £2,500 – £3,000 for a 3-bed semi, whereas I am blessed with a substantial 4-bedroom house so it might conceivably be double the price; but for any investment on that scale I’d want to see competitive prices not just one.

Finally the question arises if I really wanted to spend £7,658 on energy efficiency would more loft insulation be best value? Our old friend the EPC has a proposal in that sort of price range, and one that it believes delivers greater savings. And that proposal is.. floor insulation for my solid concrete floors. The EPC suggests that this can save £132 annually – 81% greater savings than that extra 170 mm of loft insulation albeit at up to 20 times the price. However I already ruled out floor insulation on grounds of poor return. (My guest wasn’t persuaded as to the value of floor insulation, but a check of EPCs on similar neighbouring properties by different surveyors all identified floor insulation as a greater benefit than more loft insulation)

Recommended measures from EPC

So for me the answer is clear – I don’t see any value in spending £7,658 on alternative loft insulation. For you the answer might be different – you might be planning to convert the loft into dwelling space in which case you want insulation against the tiles/slates rather than at floor level. However if you just wanted storage space then other solutions like a shed, storage unit or skip (!) could easily prove to be better value.

HEMS Wiring Update #2

Today I’ve further refined the wiring of the relays on the HEMS. At the time that I’d originally wired it I didn’t have small enough flex, or indeed multi core, which created an unnecessary number of cables (one per used relay) of over large size (and thus difficult to insert into the terminals). During the week I acquired some smaller gauge multi core allowing me to wire all three relays with a single cable containing one live feed and three switched live returns.

Revised HEMS wiring with multi core to HEMS relay outputs

Of the 5 incoming / outgoing cables at the bottom (left to right):

  1. Incoming mains (live / neutral / earth) from mains plug
  2. Live and switched live to / from ImmerSUN output relay to activate car charger.
  3. Live and switched lives to / from HEMS to activate car charger and water heating.
    • Red – live to contacts
    • Green – switched live for car charger direct – charge in response to price
    • Black – switched live for car charger indirect via ImmerSUN relay output – enable proportional charge in response to surplus PV
    • White – switched live for water heating – heat in response to price
  4. Outgoing mains (switched live / neutral / earth) to RF solutions radio transmitter to activate car charger, and on the second cable clamp..
  5. Outgoing switched live and neutral to ImmerSUN Boost relay input to enable immersion heater.

The revised wiring diagram looks like this..

Revised HEMS wiring #2

All of this still leaves one unused relay on the HEMS (HAT #3) and one unused proportional output on the ImmerSUN (#2; available for future expansion.

Initially even my smallest boot lace ferrules would not fit into the terminals on the HAT. Fortunately, once the ferrules has been crimped around the new cables, and flattened by squeezing in pliers, then the ferrules could be persuaded into the terminals.

Tarrific

I’ve been on my dynamic smart tariff for some months now, so I thought it would be a good time to see what I’m actually saving. My actual tariff rate changes each half hour, but for the purposes the supplier calculates the weighted average of what I’ve actually paid for the invoice. In principal that should be monthly, but I’ve had some bills combined over more than one month.

Smart Meter WAN
 
MonthYear 2018/19Year 2019/20Year 2020/1Year 2021/2Year 2022/3
November14.27 p/kWh8.96 p/kWh6.69 p/kWh7.37 p/kWh12.75 p/kWh
December10.17 p/kWh6.51 p/kWh9.61 p/kWh7.66 p/kWh14.26 p/kWh
January6.86 p/kWh9.74 p/kWh8.32 p/kWh15.36 p/kWh
February5.59 p/kWh11.18 p/kWh6.93 p/kWh11.36 p/kWh
March5.02 p/kWh8.85 p/kWh6.88 p/kWh10.14 p/kWh
April8.35 p/kWh8.74 p/kWh7.36 p/kWh9.33 p/kWh
May4.48 p/kWh11.50 p/kWh6.36 p/kWh8.59 p/kWh
June7.03 p/kWh3.49 p/kWh12.52 p/kWh9.48 p/kWh (part old Go at 7.5 p/kWh)
11.28 p/kWh (part new Go at 9.5 p/kWh)
July8.20 p/kWh4.40 p/kWh15.60 p/kWh (part)
End Agile / Start Go
5.92 p/kWh (part)
10.09 p/kWh (new Go with 7.5 p/kWh overnight)10.62 p/kWh (to 30/6)
10.39 p/kWh (from 01/07)
August6.29 p/kWh (part)
5.99 p/kWh (balance)
6.15 p/kWh6.19 p/kWh 11.82 p/kWh11.63 p/kWh
September5.63 p/kWh7.62 p/kWh6.30 p/kWh11.07 p/kWh13.41 p/kWh (to 15/09)
12.66 p/kWh (from 16/06)
October6.86 p/kWh6.97 p/kWh6.83 p/kWh13.76 p/kWh13.66 p/kWh

Over the course of the last few months my electricity price has reduced very significantly. I suspect that this is down to a combination of several factors including:

  • With the development of my HEMS (including its control of the battery storage) I’m getting slicker at optimising my purchase price
  • As we move into the summer the energy price is dropping with reduced demand and more renewable power available.

For reference the Energy Saving Trust reckons that the average UK price for electricity is 15.75 p/kWh on a flat rate tariff, or 19.0 on days and 9.1 p/kWh on nights for Economy 7. Thus my average electricity price in a month always beats their day rate and often beats their night rate. Of course the EST figures are the average market rates, so both better and worse deals will exist with different suppliers.

The 7.03 p/kWh for June 2019 seems to have been received with incredulity elsewhere so here’s the relevant part of the bill..

June 2019 average unit rate

I’ve never felt so engaged with my electricity supply, and am very pleased to have made the move from the dual-rate Economy 7 tariffs that I’ve used for around 30 years.

You can switch to Octopus yourself and earn the current referral bonus. https://share.octopus.energy/ochre-beach-637