Monthly Archives: November 2020

The power of mesh

Two recent manufacturers’ announcements indicate that shortly the Apple HomekIt smart home ecosystem could be getting even more robust. The announcements concern threading which creates a mesh between smart home devices. Apple have announced that the HomePod mini smart speaker will be their first device with threading capability, while Eve have announced that an imminent software update will add this capability to both Eve Door and Window and Eve Energy devices (of which we have six in total now).

The way the ecosystem currently works is that the hubs (of which we have two, both Apple TVs) communicate to each other via WiFi (or potentially wired Ethernet, both in orange) while my many smart home devices typically communicate with the nearest hub by Bluetooth (in dark green). This arrangement works well while both hubs are online, but if occasionally a hub is having issues then some devices are out-of-reach until the functionality of the hub is restored as Bluetooth struggles with the range.

However the new threading capability allows some Bluetooth devices to form a mesh (in cyan) where messages can can be passed by multiple routes from one thread-enabled smart home device to another and not just directly to and from hubs. Non-threading Bluetooth devices can then communicate to a nearby thread-enabled device (rather than a comparatively distant hub) and their messages have multiple alternative paths via the thread-enabled devices to eventually reach a hub.

BLE devices communicating to HomePod Mini hub via thread-enabled devices.

I had previously considered the Eve Extend as device capable of extending coverage to distant Bluetooth devices, but I see threading as much more attractive for me as follows:

  1. Eve Extend is configured to relay signals from a predefined set of devices (which threading does not require pre-definition),
  2. Eve Extend only covers some devices and in particular not my first-generation Eve Thermos (while threading supports any device, although only a limited range of devices form part of the mesh), and
  3. Eve Extend device allocation is fixed (so if the Extend goes down the connection goes down) but threading is dynamic, so if a threaded device goes offline (such as due to a flat battery) then an alternative path may be found via other devices in the mesh.

Eve Extend does however work differently in that it sits between BLE devices and WiFi and could thus extended coverage over a greater distance since WiFi carries further than BLE.

No fuss fuse

As we look to install a second electric vehicle charger that becomes a challenge for the electrical supply to our home which is limited to 60 Amps. I recently saw a page online by which our DNO (District Network Operator) – UKPN – could be requested to install an uprated fuse.

(Some readers may be curious regarding the irregular size of the hole around the cutout and meter. When we looked around the house I recall reflecting upon the fact that I didn’t know where the meters and consumer unit were. The mystery was explained when we moved in and these items were found to be behind a false wall in what is now my study having previously been concealed by pictures. We continued the practice by buying pictures to conceal three holes in the wall (now four) covering: electricity meter, gas meter and consumer unit (adding generation meter and isolator for solar panels).)

I’m delighted to report how smoothly the change went. I was advised that it might be the case that the work could not proceed on a first visit, and that it might be necessary for my electricity supplier to update meter and/or cables from meter to consumer unit; but the installation proceeded on the first visit with not only the cutout changed from 60 to 100 Amps but also the cables between the cutout and the meter renewed. All of this at a price of precisely nothing.

I had been reasonably confident in the meter as that had been renewed almost exactly two years ago when we moved from Economy 7 to a smart tariff, but I was less clear about the cables between the meter and the consumer unit. In the event all was fine.

The extra 40 Amps should now mean that I have no issues adding a 7.4 kW car charger which draws 32 Amps. I have previously posted about the new car charger. My task of writing the software for it is now considerably simplified as I shouldn’t need to worry about managing the after diversity maximum demand of the house to not exceed 60 Amps, and can concentrate on the other smart controls – tracking my solar surplus and responding to the smart tariff.

Eve Thermo Versions 1 and 2 compared

We currently have eight Eve Thermo electronic thermostatic radiator valves (eTRVs) in service. These valves allow us to set heating schedules and target temperatures for rooms individually, for example don’t heat the lounge of weekdays before the evening or don’t heat the playroom after the children’s bedtime. All the existing valves are the original version.

However I’ve just bought two more valves with a view to expanding control to the bathroom and ensuite. I want to add these rooms as they tend to be rooms where the windows are left open (allowing heat to escape) and the ensuite in particular is often too hot and difficult to it’s difficult to regulate the temperature as it’s immediately above the boiler. These new valves are the second generation. So what are the differences between versions?

The two versions are very similar if not the same size. The most obvious difference is that the new version has a small display and buttons allowing the temperature to be adjusted. A setup item allows the orientation of the display to be adjusted so that the temperature display is the preferred way up. The display illuminates briefly when the buttons are used to adjust the temperature.

However there are other small differences:

  1. Vacation mode. The older version has a vacation mode for winter vacations when the schedule is disabled, but heating will be enabled below the lower temperature set point. The newer version doesn’t seem to have this mode, so my existing vacation scene sets these individually: mode = on, schedule = off, temperature = 10 Celsius to achieve the same result.
  2. Lower temperature set point. In the older version the minimum possible scheduled temperature stored in a valve was 10 degrees, but a scene could set a lower temperature down to 5 degrees. I use this facility overnight to stop a rarely-used room pulling on the heating overnight in winter while still providing frost protection. However the newer version seems to have a common minimum temperature of 10 degrees. I have thus modified and renamed a scene that previously explicitly set 5 degrees to set minimum temperature, that is either 5 or 10 degrees according to valve generation.

I plan to install my two new valves in the lounge which has two radiators, and use the displaced older valves in the bathroom and ensuite.

After installation we’re now up to 10 eTRVs divided between 8 rooms (bathroom, cloakroom, daughter’s bedroom, ensuite, lounge x2, master bedroom x 2, playroom and wife’s study). Most of these rooms have individual schedules; while bathroom, cloakroom and ensuite heating is on when any other room heating is on. The latter also have window sensors and are disabled while the window is open, while the lounge also has a movement sensor which curtails heating in the evening if no movement is detected (which otherwise provides heating for my wife’s late film viewing).

Valve position for the ensuite eTRV.

The image above shows the operation of the eTRV in the ensuite which was previously the room with the greatest difficulty in maintaining an appropriate temperature – often being too hot as almost directly above the boiler. Here we can see brief morning openings and much longer evening openings on weekdays, and heating all day on Saturday. In all cases the valve initially opens wide (60-80%) to warm the room up, and then gradually closes over time until the temperature is maintained with a relatively small opening (~10%).

The system has several modes:

  1. Summer – which provides temperature monitoring, but no control.
  2. Vacation – which provides minimum temperature control, but no schedules.
  3. Winter – which provides temperature scheduling with two schedules available – one for working days and one for non-working days (not necessarily weekdays and weekends) selected from a standard Apple calendar.