Monthly Archives: May 2017

Adding smart boiler control

In my previous post I described replacing conventional thermostatic radiator valves (TRVs) with smart valves (sometimes called eTRVs).  The smart valves include both temperature set points and a schedule which allows me to operate shorter on times in rooms not used so much – such as the playroom heating turning off after my daughter’s bedtime.

My latest update is to link the valves to the boiler so that heat demand from a smart valve fires up the boiler, regardless of the settings of the older central timer and hall thermostat.  That would mean, for example, that if my wife want to watch a late film then commanding heat in the lounge would restart the boiler even if outside normal heating hours.

The effect of this change can be seen in the attached image which shows three days of valve position information for the two radiators in the lounge: two days where the boiler was enabled by the conventional timer and central thermostat, and the third day with smart boiler control.

For the first two days you can see the valve open wide for an extended period during some of which time the boiler won’t be pumping hot water as the hall is up to temperature.  However on the third day, with the link to the boiler, the valve closes very quickly from its initial position and then modulates to maintain the temperature since the boiler is running all the time when any valve is open.

The system is controlled by two rules through Apple Home:

  1. If any valve moves off closed (triggers)  then enable boiler.
  2. If any valve moves to closed (triggers), and all valves are closed (conditions), then disable boiler.

The picture shows the actual mechanism to turn the boiler on or off via the Elgato Eve Energy (which is a switchable mains outlet and energy meter) in the right side socket outlet.  I use the Eve Energy to operate a mains relay (in the black box) which in turn closes a contact between two terminals of the heating wiring box, which bypasses the heating timer and hall thermostat, sending a mains control signal to the dual port valve for the heating thus opening the valve thereby enabling the boiler through the existing controls.

The first evening’s operation showed two issues:

  1. Room temperature was reported as overshooting in some rooms, but not in one room with a newly installed valve. It may thus be that the older valves have self-tuned their controls and need to re-tune to the new more dynamic system characteristics.
  2. I needed to manually turn down the radiator in the hall which was getting too hot.  If that persists then I may need to add a TRV or smart valve to the hall.

Internet of Things

Last night I made a small update to our heating system by adding some smart radiator valves. I’d been thinking for some time that there were efficiencies to be made regarding what rooms were heated when. Until now we’ve had a 7 day heating timer (so we have different heating schedules on weekdays and weekends) and thermostatic radiator valves (so we can set specific temperatures in each room) but now we’ve gone a step further.

Radiator valve

Radiator valve

These days there are in my opinion three types of radiator valves:

  1. Traditional proportional valves – these valves allow the flow to a radiator to be set manually, but there’s no control to maintain a set temperature. So if for example a room is south-facing it may get too hot on a sunny day as no account is made of the solar gain, or a relatively exposed room may get too cold on a windy day as no account is made for the extra heat loss.
  2. Thermostatic valves – here the user can set a temperature for each valve, and then internal expansion or contraction of the thermostat reduces or increases the flow through the radiator to maintain the set temperature; but all radiators heat at the same times as set by the heating timer.
  3. Smart valves – smart valves add the ability to schedule temperature and/or on and off periods in different rooms at different times.

Valve Schedule

In my case I identified 3 rooms (5 radiators total) in which I thought that the typical usage was different enough from the house as a whole to warrant smart valves. For the purposes of illustration only, I’ve also added the schedule for the boiler timer although this is programmed independently of the radiator valves. The three rooms are:

  1. Lounge – we don’t use the lounge on termtime weekday mornings.
  2. Master bedroom – we don’t use the room during the day, so the heating can stay off until towards bedtime.
  3. Play room – my daughter doesn’t use her playroom before nursery or after her bedtime.

The chosen smart valves are Elgato Eve Thermos which are Apple HomeKit compatible but are also configurable via Elgato’s own App; but not configurable via non-Apple devices. I initially tried setting up the required sequences via timed scene changes, but couldn’t see an easy way to schedule both workdays and days off; so I ended up downloading schedules directly into the valves via Elgato’s own App. This allows different schedules to be established easily for both working and non-working days with a schedule to identify non-working days set in as a calendar in my iPad. It’s easy to set up a recurring schedule for weekends and then other dates like bank or school holidays can quickly be added. Vacations when we’re away from home are still set up via timed scene changes.