Here’s a little Tonik..


Today my energy supplier Tonik wrote to me inviting me to consider solar panels, a car charger, or a storage battery – all of which I already have.  However on their website I found a wider vision of the future home which they thought could halve energy consumption. I thought it would be interesting to compare their vision with my status.

As you can see from the table below the content is quite similar, although I have more ambitious use of solar and more sophisticated smart heating management.

Tonik's VisionMy status
Switch to Tonik for lowest cost renewable electricity.Done.
Smart meterWaiting on Tonik
Connected thermostat (whole of house device)Connected thermostats (individual room temperatures and schedules)
LED bulbsDone.
Smart tariffWithout a smart meter on nearest equivalent (Economy 7)
Solar PV Done.
Battery storage.Done.
-Surplus solar electricity diverted to charge electric car.
-Surplus solar electricity diverted to heat water.
Please follow and like Greening Me:

Using an Apple TV box as a home hub


When I first set up the smart home system I used my iPad as a hub.  You don’t need a hub at all for the individual smart radiator valves to follow their daily schedules, but the use of a hub is required for devices to interact with each other (such as a valve calling for the boiler to come on) or indeed to identify which days are working days and which are non-working days (since this is taken from a calendar). However of course this doesn’t work when the iPad is removed from the home.

The solution is to configure an Apple TV box as a home hub – enabling devices to communicate via the TV box.  This also enables remote control so a user with an iPad can operate the system when away from the home – such as disabling the vacation settings while still on vacation to allow the house to warm up.

Of course the Apple TV box can also be used to watch TV which my daughter uses to watch CBeebies or YouTube kids TV via the appropriate apps.

To date we have 7 smart devices – 6 radiator valves divided between 4 rooms, and a socket which is used to enable the boiler when any smart valve demands heat.

Please follow and like Greening Me:

Contents of my solar car charger

My electric car charger is built into a case more normally used for household consumer units.  From left to right its contents are:

  1. 2 slots – Double pole on/off switch to isolate the incoming mains supply entering from below.
  2. 4 slots – Programmable Logic Controller (PLC) which takes 2 inputs (remote on/off via radio link and contactor status – see item #4) and generates 1 of 4 outputs (corresponding to off, 6 Amps, 10 Amps or 16 Amps).  Beneath the PLC (and not visible inside the case) sits a circuit board with an array of resistors corresponding to the required current settings.
  3. 2 slots – Protocol controller which handles the Mode 3 handshake with the car and switches between current settings based on the selected resistor.
  4. 1 slot – Contactor which turns the power to the vehicle on/off based on the output from the protocol controller.  Cable to car exits below.
  5. 1 slot – unused.

The dedicated charger circuit is fed from a RCBO in a small consumer unit on the other side of the garage which combines overcurrent protection (20 Amps) and Type A residual current detection (30 mA).

 

 

 

Please follow and like Greening Me:

A mixed August day of charging


Today I was at home working on a DIY project while the car was on charge for much of the day, a day which was fairly mixed in weather terms.  I thought it would be appropriate for an update on the car charger which has been in operation for around a year.

You may recall that the car generally remains plugged into the charger whenever it is at home, but doesn’t generally charge until there’s sufficient surplus on the solar panels, unless timed charging has been enabled for when the weather isn’t so sunny.

The picture shows the charger itself built into a case intended for a consumer unit.  Alongside the charger sits the receiver for the Mainslink system which provides for a radio signal from the house turning on the charger in the garage.  The smaller black unit is the holster for the vehicle connector so that it doesn’t lie on the floor when not in use.

The screenshot to the left shows the electricity consumption of the house including the car charger (the purple line) tracking the output of the solar panels (the green area).  Any failure to fully use all the electricity available causes the remaining electrical surplus to be diverted via a proportional control to the immersion heater to make hot water (the blue line).

Over the course of the day although we’ve used 17.1 kWh of electricity directly, and another 2.8 kWh of electricity for water heating (making 19.9 kWh used in total); but we’ve bought only 3.1 kWh of electricity.

Please follow and like Greening Me:

Solar output – 2017 Jan – Jun

2017 H1

Now that we’re half way through 2017 it seemed appropriate to have a look at energy usage from the solar panels – especially as those six months reflect the first six months with the battery storage system.

The graph is taken from my ImmerSUN smart controller which automatically diverts surplus solar electricity to the car charger or immersion heater.  The battery storage system has independent controls but its benefits can be seen via the ImmerSUN.

The purple line shows the consumption of electricity (excluding the immersion heater) and is relatively stable month by month.  Consumption is relatively large due to my electric car and cooking with electricity.

The green line shows the generation of electricity from my solar panels.  Not surprisingly output is lower in the winter, but from April we generate more electricity than we use despite our relatively high consumption.  In principle we could be electricity independent during those months but for the time of consumption not matching the time of generation.

The red line complements the green line as it shows the import or purchase of electricity from the grid, and thus reduces as the generation rises.

The blue line shows the diversion  of electricity to heat water via the immersion heater when neither the battery storage system nor the car charger can absorb the available electricity.

Finally on the graph the turquoise line shows export of electricity to the grid when all smart capability within the house to use electricity is exhausted i.e. battery storage system at maximum power or full, electric car battery full or absent, and water in cylinder is hot.

Among the numbers:

‘Savings” at £80 refer only to the value of the water heating achieved from solar electricity versus buying electricity (although our backup is mains gas).

“Self consumption” at 86% refers to the proportion of solar panel output used i.e. not exported to the grid.

“Green contribution” at 59% refers to the proportion of total electricity consumption (excluding water heating) derived from the panels rather than from the grid.

 

Please follow and like Greening Me:

Battery storage – the first 6 months

I’ve now completed 6 calendar months with the battery storage system.  Those six months cover January – June so might be considered representative of the year as a whole.  I have real-time monitoring of solar panel output and house consumption / export so I have clear visibility that the battery is working and storing energy, and then discharging energy through the evening as I see the house with near zero electricity consumption sometimes through into the early hours of the morning (less if we’ve cooked our evening meal on electricity).  So, environmentally it’s doing its stuff, but what is it saving financially?

There are at least three ways to assess that, so let’s see how they look.

Firstly, from the capacity of the battery (4 kWh), and assuming that it’s filled daily one can calculate a benefit.  That benefit would tend to overestimate benefit in winter when there may not be enough energy to fill the battery, but equally could understate saving some days when the battery goes through repeated periods of charging and discharging during the day.  One could imagine the heating cycle of the dishwasher, for example, perhaps causing some discharge of the battery during the day if the washing machine load isn’t met from the solar panels, but then then re-charging before the evening and thus its daily throughput being higher than it’s capacity as some of that capacity is used more than once per day.

So, if the battery stores 4 kWh and there are 365 days in a year where each kWh not bought is worth 11.5 p/kWh then the saving might be 4 kWh/day x 365 days/year x 11.5 p/kWh =  £167.90.

Secondly, let’s look at electricity savings.   If I compare the first 6 months of 2017 (with a battery) to the first 6 months of 2016 (without a battery) then electricity purchase has reduced by 824 kWh (38%).  Thus the saving could be 824 kWh/six-months x 2 six-months/year x 11.5 p/kWh =  £189.52.

Of course, as my chart shows, there are other changes that potentially impact electricity use between those 2 time periods, so that might be an overestimate.

The third and final way that I’ve analysed this is to look at the data about how the output of the solar panels has been used.  In 2016 I used 44% of the output of the panels to replace bought electricity, and a further 28% of output to replace gas consumption.  In the first half of 2017 however I used 63% of the output of the panel to replace bought electricity, but only 24% of output to replace gas consumption.  The reduction in use for water heating reflects the prioritisation of the battery over water heating as a kWh of electricity purchase avoided is much more valuable than a kWh of gas purchase avoided.  Against 2016’s full year generation of 4,192 kWh that gives a saving of only £87.84 which is much the lowest of the 3 figures.  However this only accounts for more efficient use of the solar panel output, and not winter savings from shifting energy purchase from day to night time when it’s cheaper.

Whether any of these figures represents a saving over the life of the storage system entirely depends on the lifetime of the system, the life of the batteries inside it, and the replacement costs of those batteries

Please follow and like Greening Me:

Adding smart boiler control

In my previous post I described replacing conventional thermostatic radiator valves (TRVs) with smart valves (sometimes called eTRVs).  The smart valves include both temperature set points and a schedule which allows me to operate shorter on times in rooms not used so much – such as the playroom heating turning off after my daughter’s bedtime.

My latest update is to link the valves to the boiler so that heat demand from a smart valve fires up the boiler, regardless of the settings of the older central timer and hall thermostat.  That would mean, for example, that if my wife want to watch a late film then commanding heat in the lounge would restart the boiler even if outside normal heating hours.

The effect of this change can be seen in the attached image which shows three days of valve position information for the two radiators in the lounge: two days where the boiler was enabled by the conventional timer and central thermostat, and the third day with smart boiler control.

For the first two days you can see the valve open wide for an extended period during some of which time the boiler won’t be pumping hot water as the hall is up to temperature.  However on the third day, with the link to the boiler, the valve closes very quickly from its initial position and then modulates to maintain the temperature since the boiler is running all the time when any valve is open.

The system is controlled by two rules through Apple Home:

  1. If any valve moves off closed (triggers)  then enable boiler.
  2. If any valve moves to closed (triggers), and all valves are closed (conditions), then disable boiler.

The picture shows the actual mechanism to turn the boiler on or off via the Elgato Eve Energy (which is a switchable mains outlet and energy meter) in the right side socket outlet.  I use the Eve Energy to operate a mains relay (in the black box) which in turn closes a contact between two terminals of the heating wiring box, which bypasses the heating timer and hall thermostat, sending a mains control signal to the dual port valve for the heating thus opening the valve thereby enabling the boiler through the existing controls.

The first evening’s operation showed two issues:

  1. Room temperature was reported as overshooting in some rooms, but not in one room with a newly installed valve. It may thus be that the older valves have self-tuned their controls and need to re-tune to the new more dynamic system characteristics.
  2. I needed to manually turn down the radiator in the hall which was getting too hot.  If that persists then I may need to add a TRV or smart valve to the hall.
Please follow and like Greening Me:

Internet of Things

Last night I made a small update to our heating system by adding some smart radiator valves. I’d been thinking for some time that there were efficiencies to be made regarding what rooms were heated when. Until now we’ve had a 7 day heating timer (so we have different heating schedules on weekdays and weekends) and thermostatic radiator valves (so we can set specific temperatures in each room) but now we’ve gone a step further.

Radiator valve

Radiator valve

These days there are in my opinion three types of radiator valves:

  1. Traditional proportional valves – these valves allow the flow to a radiator to be set manually, but there’s no control to maintain a set temperature. So if for example a room is south-facing it may get too hot on a sunny day as no account is made of the solar gain, or a relatively exposed room may get too cold on a windy day as no account is made for the extra heat loss.
  2. Thermostatic valves – here the user can set a temperature for each valve, and then internal expansion or contraction of the thermostat reduces or increases the flow through the radiator to maintain the set temperature; but all radiators heat at the same times as set by the heating timer.
  3. Smart valves – smart valves add the ability to schedule temperature and/or on and off periods in different rooms at different times.

Valve Schedule

In my case I identified 3 rooms (5 radiators total) in which I thought that the typical usage was different enough from the house as a whole to warrant smart valves. For the purposes of illustration only, I’ve also added the schedule for the boiler timer although this is programmed independently of the radiator valves. The three rooms are:

  1. Lounge – we don’t use the lounge on termtime weekday mornings.
  2. Master bedroom – we don’t use the room during the day, so the heating can stay off until towards bedtime.
  3. Play room – my daughter doesn’t use her playroom before nursery or after her bedtime.

The chosen smart valves are Elgato Eve Thermos which are Apple HomeKit compatible but are also configurable via Elgato’s own App; but not configurable via non-Apple devices. I initially tried setting up the required sequences via timed scene changes, but couldn’t see an easy way to schedule both workdays and days off; so I ended up downloading schedules directly into the valves via Elgato’s own App. This allows different schedules to be established easily for both working and non-working days with a schedule to identify non-working days set in as a calendar in my iPad. It’s easy to set up a recurring schedule for weekends and then other dates like bank or school holidays can quickly be added. Vacations when we’re away from home are still set up via timed scene changes.

Please follow and like Greening Me:

Latest software update

Part of the ladder logic program in the PLC

This afternoon I’ve spent a little time working on the charger. The charger stopped working on Monday after the power was interrupted for an hour or so while other electrical work was completed. A quick check at the time concluded that the radio link between the immerSUN and the charger had stopped working, and that the problem wasn’t a fuse, but other time commitments prevented further investigation until now.

The radio link carries the control signal from the immerSUN in the airing cupboard to the car charger in the detached garage.  The control signal is generated either when the immerSUN has detected that a suitable surplus of PV electricity is available to want the car charger enabled or its output current increased; or when a timed boost is programmed in the immerSUN typically to do overnight charging on cheap rate Economy 7 power; or indeed when a manual boost is demand via the immerSUN front panel, app or web portal.

Fortunately lack of the control signal doesn’t prevent car charging as I can disable the integral PLC (which leaves the charger on continuously) and allow the car’s internal timer to control when the car charges.

This afternoon I’ve successfully re-paired the receiver to the transmitter to restore normal charger operation and uploaded my latest software to the PLC.

The capabilities of the charger are now as follows:

Operating currents: 6, 10 and 16 Amps
Maximum continuous current (continuous grid load current):10 Amps
Peak current (from PV + battery only):16 Amps
Range switch interval:6 minutes
Minimum on time:10 minutes
Control signal watchdog (not during Economy 7 hours):15 minutes
Control source:ImmerSUN
Please follow and like Greening Me:

Battery profile through the day

January 5th was a good day to demonstrate the battery’s contribution to the home on a day on which 9.75 kWh was generated. The battery at this point in the year is configured to charge on cheap overnight electricity as well as store excess PV electricity (when there is any). The day also included evidence of water heating and car charging after I returned home at lunchtime.

Over all only 2 kWh of power was purchased during the day at full price, while 12 kWh of cheap night time electricity ran the dishwasher and washing machine, did some car charging (I charge for an hour which leaves headroom for later solar charging), and contributed 5 kWh to charging the fixed battery.

During the relatively sunny December day, as PV output rises, the battery starts to recharge and then, once the battery is charging at its maximum rate, remaining PV output is used to heat water (although described as ‘Grid Power Out’ in the chart above).  At around 12:30 I arrived home and put the car on charge (the blue spikes) and made lunch (the brown spikes).  The blue spikes of car charging occur as the chargers turn off intermittently to allow available power to be assessed.  As PV output falls EV charging starts to require limited support from the battery (the rising brown line through the blue spikes) until eventually all EV charging stops and the system returns to a combination of battery charging and water heating.

As the sun sets the brown line rises again as the battery takes on the load of the house. Green spikes indicate boiling the kettle before 18:00, cooking dinner from shortly after 19:00, and a further kettle boil at around 23:00.  Apart from these import events totalling less than 2 kWh, the house continues running on stored energy from the battery through into the next day when the cycle restarts.

At some point I assume that it will be necessary to curtail the overnight charging of the battery so that it doesn’t miss out on day time charging from PV as a result of being full. That may be responsible for some of the blue cycling with the car charging associated with the rising brown line – if the battery is already full then the car charger will be enabled at lower levels of power generation potentially causing the battery to partially support the car charging.

Please follow and like Greening Me: